Actualización de Tensorflow 1.1.0 en el contenedor Docker para Raspberry

Aprovechando la salida de la nueva versión estable de Tensorflow 1.1.0 he actualizado la imagen Docker para Raspberry de la que os hablé en el anterior artículo.

Nuevos elementos:

Obviamente una humilde Raspberry no parece la mejor plataforma para ejecutar los últimos algoritmos de aprendizaje automático (Machine Learning), una rama de la Inteligencia Artificial, que últimamente está teniendo gran repercusión y que está presente a dia de hoy en un gran número de las aplicaciones de uso cotidiano, pero no por ello quiere decir que no se pueda experimentar en esta plataforma, únicamente nos limitará en cuanto a tiempo de respuesta y capacidad de cómputo, pero por suerte la mayoría de los ejemplos que se utilizan para su aprendizaje son lo suficientemente sencillos para que con un poco de paciencia los podamos ejecutar.

Hare Deep Dream

Gracias a los contenedores de Docker en apenas unos minutos podremos bajar el entorno de ejecución y las herramientas necesarias para su uso, de forma limpia, sin instalar nada directamente en el propio sistema de la Raspberry, lo cual nos libra de varias horas de tediosa instalación de decenas de librerías.

De forma similar, gracias a los Notebooks de Jupyter podremos compartir nuestros desarrollos y ejecutarlos en otras plataformas de forma transparente.

TensorBoard Example in Raspberry

Todo esto es lo que me motiva para compartir este contenedor y poner así mi pequeño granito de arena, esperando que os resulte de utilidad al igual que a mi me ha resultado de utilidad todos los elementos que forman parte del mismo y que muchas otras personas han contribuido generosamente.

A continuación os dejo los enlaces a GitHub y el Repositorio de Docker, con los que podréis empezar a utilizar directamente el contenedor o construir el vuestro ajustandolo a vuestras necesidades.

comments powered by Disqus